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1. FORMULATION

Linear programming, quadratic programming, and bimatrix (two-
person, nonzero-sum) games lead to the consideration of the following
fundamental problem': Given a real p-v ctor ¢ and a real p x p matrix
M, find vectors w and z which satisfy the conditions?

w=gq+ Mz, w=0, 220, (1)
zw = (). (2)

The remainder of this section is devoted to an explanation of why this
is so. (There are other fields in which this fundamental problem arises—
see, for example, [6] and [13]—but we do not treat them here.) Sections
2 and 3 are concerned with constructive procedures for solving the fun-
damental problem under various assumptions on the data ¢ and M.

! The fundamental problem can be extended from p sets each consisting of a
pair of variables only one of which can be nonbasic to % sets of several variables each,
only one of which can be nonbasic. To be specific, consider a system w = g + Nz,
w=> 0, 22 0, where N is a p x & matrix (k <C p) and the variables w,, . .., wp are
partitioned into 2 nonempty sets S, 7= 1,.. .,k Let T, = SU{g}, 1=1,..., %
We seek a solution of the system in which exactly one member of each set Tj is
nonbasic. (The fundamental problem is of this form where # = p and T = {wy, z}.)
The underlying idea of Lemke’s approach (Section 2) applies here. For example, it
can be shown that this problem has a solution when N > 0. A paper is currently
being prepared for publication in which this extension is developed in detail.

2 In general, capital italic letters denote matrices while vectors are denoted by
lower case italic letters. Whether a vector is a row or a column will always be clear
from the context, and consequently we dispense with transpose signs on vectors. In
(2), for example, zw represents the scalar product of z (row) and w (column). The
superscript 7T indicates the transpose of the matrix to which it is affixed.
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104 R. W. COTTLE AND G. B. DANTZIG

Consider first linear programs in the symmetric primal-dual form
due to J. von Neumann [20].

Primal linear program: Find a vector x and minimum Z such that
Ax > b, x>0, 7= cx. (3)

Dual linear program: Find a vector y and maximum z such that

yA<ce, y=0, z=yb (4)

The duality theorem of linear programming [3] states that min # = max z
when the primal and dual systems (3) and (4), respectively, are consistent
or—in mathematical programming parlance— “feasible.” Since

2=yvb L yAx<{ex =2

for all primal-feasible x and dual-feasible v, one seeks such solutions for
which
vb = cx. (5)

The inequality constraints of the primal and dual problems can be
converted to equivalent systems of equations in nonnegative variables
through the introduction of nonnegative ‘“‘slack’ variables. Jointly, the
systems (3) and (4) are equivalent to

Ax —v =5, v>=0, x>0
(6)
ATy + u = c, u>=0 y=0,

and the linear programming problem becomes one of finding vectors
u, v, x, ¥ such that

u c 0 —AT\/=x u=0 v=>=0, _
] \—b + A 0 y)’ x>=0, y=0, @
and, by (5),

an + yo = 0. (8)
The definitions

() () ()

establish the correspondence between (1), (2) and (3), (4).
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The quadratic programming problem is typically stated in the following
manner: Find a vector x and minimum £ such that

Ax = b, x>=0, Z=cx + 1xDx. (10)

In this formulation, the matrix D may be assumed to be symmetric.
The minimand £ is a globally convex function of x if and only if the quad-
ratic form xDx (or matrix D) is positive semidefinite, and when this
is the case, (10) is called the convex quadratic programming problem. It
is immediate that when D is the zero matrix, (10) reduces to the linear
program (3). In this sense, the linear programming problem is a special
case of the quadratic programming problem.

For any quadratic programming problem (10), define # and v by

w=Dx — ATy + ¢, v=Ax —b. (11)
A vector x0 yields minimum £ only if there exists a vector ¥ and vectors
#9, 10 given by (11) for x = x° satisfying
X020, w00, =0 w0>=0,

x0u0 = 0, 100 — (),

These necessary conditions for a minimum in (10) are a direct consequence
of a theorem of H. W. Kuhn and A. W. Tucker [14]. It is well known—
and not difficult to prove from first principles—that (12), known as the
Kuhn-Tucker conditions, are also su/ficient in the case of convex quadratic
programming. By direct substitution, we have for any feasible vector x,

F—50=c¢(x — x% + dxDx — 1x%Dx°
= 00— 20) £ 9o — o) + hx — ¥)D(x — 57
= u% + v% + L{x — 29 D(x — 2% =0,

which proves the sufficiency of conditions (12) for a minimum in the
convex case.

Thus, the problem of solving a quadratic program leads to a search
for solution of the system

u=Dx — ATy + ¢, =0, y=0,
(13)

v=Ax — b, >0, v>=0,
xt + yv =0. (14)

Linear Algebva and Its Applications 1, 103125 (1968)
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The definitions

() o e )

establish (13), (14) as a problem of the form (1}, (2).
Dual of a convex quadratic program. From (15) one is led naturally
D — A" . .
A E > wherein E, like D,
is positive semidefinite. It is shown in [1] that the
Primal quadratic program: Find x and minimum 2 such that

to the consideration of a matrix M = (

Ax 4+ Ey > b, x =0, i=cx+ HxDx + yEY), (16)

has the associated
Dual quadratic program: Find y and maximum z such that

— Dx 4+ ATy < ¢, vy =0, z=>by — YxDx — yEy). (17)

All the results of duality in linear programming extend to these problems,
and indeed they are jointly solvable if either is solvable. When E = 0,
the primal problem is just (10), for which W. S. Dorn [5] first established
the duality theory later extended in [1]. When both D and E are zero
matrices, this dual pair (16), (17) reduces to the dual pair of linear programs

3), 4).

Remarks. (a) The minimand in (10} is strictly convex if and only
if the quadratic form xDx is positive definite. Any feastble strictly
convex quadratic program has a unique minimizing solution x° (b)
When D and E are positive semidefinite (the case of convex quadratic

programming), so is
Iy D — A7
={, E )

A bimairix (or two-person nonzero-sum) game, I'(4, B), is given by
a pair of m x » matrices 4 and B. One party, called the row player, has
m pure strategies which are identified with the rows of 4. The other
party, called the column player, has n pure strategies which correspond
to the columns of B. 1If the row player uses his 7th pure strategy and
the column player uses his jth pure strategy, then their respective losses
are defined as a; and b, respectively. Using mixed strategies,

Linear Algebra and Its Applications 1, 103—125 (1968)
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K= (xy e ) 2 0, 2x=1,

y={(y .-, ¥) =0, 2 y=1

their expected losses are x4y and xBy, respectively. (A component
in a mixed strategy is interpreted as the probability with which the player
uses the corresponding pure strategy.)

A pair (x9 v° of mixed strategies is a Nash [19] equilibrium point
of I'(4, B) if

xAy0 all mixed strategies x,
x°By, all mixed strategies y.

It is evident (see, for example, [15]) that if (x9, ¥9) is an equilibrium point
of I'(4, B), then it is also an equilibrium point for the game I'(4’B’) in
which

A'=lay+ K], B '=1[b;+ L]

where K and L are arbitrary scalars. Hence there is no loss of generality
in assuming that 4 > 0 and B > 0, and we shall make this assumption
hereafter.

Next, by letting e, denote the k-vector all of whose components are
unity, it is easily shown that (x9, y9) is an equilibrium point of I'(4, B)
if and only if

(x4 y%e,, < Ay° (4 >0), (18)
(x°ByYe, < BTa0 (B > 0). (19)

This characterization of an equilibrium point leads to a theorem which
relates the equilibrium-point problem to a system of the form (1), (2).
For A >0 and B > 0, if u*, v*, x* v* is a solution of the system

u=Ay — e, =0, v=0,
(20)
v= BTx —e¢,, v=0, x>0,
xu + yv =0, 21)
then
x* y*
0 4,0y — A
(20, ¥°) <x*em y*6n>

Linear Algebva and lts Applications 1, 103—125 (1968)



108 R. W. COTTLE AND G. B. DANTZIG

is an equilibrium point of I'(4, B). Conversely, if (x9, ¥9) is an equilibrium
point of I'(4, B) then

50 0
* %) — | -
(%, %) <x°By° ’ xOAyO)

is a solution of (20), (21). The latter system is clearly of the form (1), (2),
where

() 0 s =)

Notice that the assumption 4 > 0, B > 0 precludes the possibility of
the matrix M above belonging to the positive semidefinite class.

The existence of an equilibrium point for I'(4, B) was established
by J. Nash [19] whose proof employs the Brouwer fixed-peint theorem.
Recently, an elementary constructive proof was discovered by C. E.
Lemke and J. T. Howson, Jr. [15].

2, LEMKE'S ITERATIVE SOLUTION OF THE FUNDAMENTAL PROBLEM

This section is concerned with the iterative technique of Lemke and
Howson for finding equilibrium points of bimatrix games which was
later extended by Lemke to the fundamental problem (1), (2). We introduce
first some terminology common to the subject of this section and the
next. Consider the system of linear equations

w=q+ Mz, (22)

where, for the moment, the p-vector ¢ and the p X p matrix M are
arbitrary. Both w and z are p-vectors.

For 2=1,...,p the corresponding variables z; and w; are called
complementary and each is the complement of the other. A complementary
solution of (22) is a pair of vectors satisfying (22) and

z,-wi:O, 121,,75 (23)

Notice that a solution (w; 2) of (1), (2) is a nonnegative complementary
solution of (22). Finally, a solution of (22) will be called almost com-
plementary if it satisfies (23) except for one value of 7, say + = §. That
is, 25 % 0, w, £ 0.

In general, the procedure assumes as given an extreme point of the
convex set

Linear Algebra and Its Applications 1, 103125 (1968)



PIVOT THEORY OF MATHEMATICAL PROGRAMMING 109
Z={slw=qg+Mz20, 2220},

which also happens to be the end point of an almost complementary
ray (unbounded edge) of Z. Each point of this ray satisfies (23) but for
one value of 7, say . It is not always easy to find such a starting point
for an arbitrary M. Yet there are two important realizations of the
fundamental problem which can be so initiated. The first is the bimatrix
game case to be discussed soon; the second is the case where an entire
column of M is positive. The latter property can always be artificially
induced by augmenting M with an additional positive column; as we
shall see, this turns out to be a useful device for initiating the procedure
with a general M.

Each iteration corresponds to motion from an extreme point P, along
an edge of Z all points of which are almost complementary solutions of
(22). If this edge is bounded, an adjacent extreme point 7, , is reached
which is either complementary or almost complementary. The process
terminates if (i) the edge is unbounded (a ray), (ii) P; ., is a previously
generated extreme point, or (iii) P; , is a complementary extreme point.

Under the assumption of nondegeneracy, the extreme points of Z
are in one-to-one correspondence with the basic feasible solutions of (22)
(see [37). Still under this assumption, a complementary basic feasible
solution is one in which the complement of each basic variable is nonbasic.
The goal is to obtain a basic feasible solution with such a property. In
an almost complementary basic feasible of (23), there will be exactly
one index, say £, such that both w; and z; are basic variables. Likewise,
there will be exactly one index, say », such that both w, and z, are non-
basic variables.?

An almost complementary edge is generated by holding all nonbasic
variables at value zero and increasing either z, or =, of the nonbasic
pair z,, w,. There are consequently exacily fwo almost complementary
edges associated with an almost complementary extreme point (cor-
responding to an almost complementary basic feasible solution).

Suppose that z, is the nonbasic variable to be increased. The values
of the basic variables will change linearly with the changes in z,. For
sufficiently small positive values of z,, the almost complementary solution
remains feasible. This is a consequence of the nondegeneracy assumption.

3 C. van de Panne and A. Whinston [21] have used the appropriate terms basic
and nonbasic pair for {wp, zg} and {w,, #,} respectively.
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But in order to retain feasibility, the values of the basic variables must
be prevented from becoming negative.

If the value of z, can be made arbitrarily large without forcing any
basic variable to become negative, then a ray is generated. In this event,
the process terminates. However, if some basic variable blocks the increase
of z, (i.e., vanishes for a positive value of z,), then a new basic solution
is obtained which is either complementary or almost complementary.
A complementary solution occurs only if a member of the basic pair
blocks z,. A new almost complementary extreme point solution is obtained
if the blocking occurs otherwise. In the complementary case, we have the
desired result: a complementary basic feasible solution. In the almost
complementary case, the nondegeneracy assumption guarantees the
uniqueness of the blocking variable. It will become nonbasic in place
of z, and its index becomes the new value of ».

The complementary rule

The complement of the (now nonbasic) blocking variable—or equiv-
alently put, the other member of the “new’ nonbasic pair—is the next
nonbasic variable to be increased. The procedure consists of the iteration
of these steps. The generated sequence of almost complementary extreme
points and edges is called an almost complementary path.

THEOREM 1. Along an almost complementary path, the only almost
complementary basic feasible solution which can veoccur is the initial one.

Proof. We assume that all basic feasible solutions of (22) are non-
degenerate. (This can be assured by any of the standard lexicographic
techniques [3] for resolving the ambiguities of degeneracy.) Suppose,

Pyoz¢ /Pk
\o/ .

Py

contrary to the assertion of the theorem, that the procedure generates
a sequence of almost complementary basic feasible solutions in which a
term other than the first one (P, in the accompanying figure) is repeated

Linear Algebra and Its Applications 1, 103—125 (1968)
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(say P;). By the nondegeneracy assumption, the extreme points of Z
are in one-to-one correspondence with basic feasible solutions of (22).
Let P, denote the successor of P; and let P, denote the second predecessor
to P;, namely the one along the path just before the return to P;,. The
extreme points Py, P,, P, are distinct and each is adjacent to P, along
an almost complementary edge. But there are only fwo such edges at P,.
This contradiction completes the proof.

We can immediately state the

COROLLARY. If the almost complementary path is initiated at the end
point of an almost complementary ray, the procedure must terminate either
wm a different ray or in a complementary basic feasible solution.

Itis easy to show by examples that starting from an almost complemen-
tary basic feasible solution which is not the end point of an almost com-
plementary ray, the procedure can return to the initial point regardless
of the existence or nonexistence of a solution to (1), (2).

Example 1. The set Z associated with

1 / 0 0 0
3 \—1 —1 —1

is nonempty and bounded. It is clear that no solution of (1) can also
satisfy (2) since zw; > 0. Let the extreme point corresponding to the
solution w = (1,0, 0), z = (1,0, 2) be the initial point of a path which
begins by increasing z,. This will return to the initial extreme point
after 4 iterations.

Example 2. The set Z associated with

1 O 0 0 0
1 1 o0 0 1

— M=
7 3| 1 —1 -1 —1
1 0 o 0 —1

is likewise nonempty and bounded. The corresponding fundamental
problem (1), (2) has a complementary solution w = (1,0,1,0), z =
(0,1,0,1). Yet by starting at w = (1,2,0,1), 2= (3,0,0,0) and in-
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112 R. W. COTTLE AND G. B. DANTZIG

creasing z;, the method generates a path which returns to its starting
point after 4 iterations.

Furthermore, even if the procedure is initiated from an extreme
point at the end of an almost complementary ray, termination in a ray
is possible whether or not the fundamental problem has a solution.

Example 3. Given the data

S =D D

1
1
1
—1

I
O =
1

the point of Z which corresponds to w = (1,0, 4, 1), z = (1, 0, 0, 0) is at the
end of an almost complementary ray, w = (1, w,, 4 + w,, 1), z =
(1 + w,, 0, 0, 0). Moving along the edge generated by increasing z, leads to
a new almost complementary extreme point at which the required increase
of z, is unblocked, so that the process terminates in a ray, and yet the
fundamental problem is solved by

w=(2010, z=1(0101).

Example 4. In the problem with

() =)

the inequalities (1) have solutions, but none of them satisfies (2). The
point corresponding to (w;z) = (1,0;1,0) is at the end of an almost
complementary ray w = (1, w,), 2 = (w,, 0). When 2z, is increased, it is
not blocked, and the process terminates in a ray.

Comsequences of termination in a ray

In this geometrical approach to the fundamental problem, it is useful
to interpret algebraically the meaning of termination in an almost com-
plementary ray. This can be achieved by use of a standard result in linear
inequality theory [11, 3].

LEMMA. If (w*; 2*) is an almost complementary basic feasible solution
of (22), and (w*;2z*) is incident to an almost complementary ray, there
exist p-vectors w", 2" such that

wh = Mz, wh >0, =0, 2 £0 (24)
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and points along the almost complementary ray are of the form
(w* + Awh, 2% 4 AZY), A=0, (25)
and satisfy

(* + Jw)(2* + Az?) = 0 jor all A=>0, and all i 4. (26)

THEOREM 2. If M > 0, (22) has a complementary basic feasible solution
for any wvector gq.

Proof. Select w,,...,w, as the basic variables in (22). We may
assume that ¢ 2> 0 for otherwise (w; z) = (¢; 0) immediately solves the
problem. A starting ray of feasible almost complementary solutions is
generated by taking a sufficiently large value of any nonbasic variable,
say z. Reduce z, toward zero until it reaches a value 2% >> 0 at which
a unique basic variable (assuming nondegeneracy) becomes zero. An
extreme point has then been reached.

The procedure has been initiated in the manner described by the
corollary above, and consequently the procedure must terminate either
in a complementary basic feasible solution or in an almost complementary
ray after some basic feasible solution (w; z*) is reached. We now show
that the latter cannot happen. For if it does, conditions (24)—(26) of the
lemma obtain with § = 1. Since M > 0 and 2" >> 0, this implies =" > 0.
Hence by (26), z* = z* = 0 for all i 1. Hence the only variables
which change with A are z; and the components of w. Therefore the final
generated ray is the same as the initiating ray, which contradicts the
corollary.

THEOREM 3. A bimatrix game I'(A, B) has an extreme equilibrium
point.

Proof. Initiate the algorithm by choosing the smallest positive value
of %, say x,% such that

v=—¢, + ByTx,° >0, (27)
where BIT is the first column of BY. With

0= — ¢, + B, 7,0

Lineav Algebva and [ts Applications 1, 103--125 (1968)
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it follows {assuming nondegeneracy) that v? has exactly one zero compo-
nent, say the rth. The ray is generated by choosing as basic variables x,
and all the slack variables #, v except for v, The complement of v,,
namely y,, is chosen as the nonbasic variable to increase indefinitely.
For sufficiently large values of y,, the basic variables are all nonnegative
and the ray so generated is complementary except possibly x,u#, might
not equal 0. Letting y, decrease toward zero, the initial extreme point
is obtained for some positive value of y,.

If the procedure does mot terminate in an equilibrium point, then
by the corollary, it terminates in an almost complementary ray. The
latter implies the existence of a class of almost complementary solutions
of the form*

u* - Auh — e, 0 A\ /x* | lx") N

vt b dwr) T \—e, ) T\BT 0 J\y* + a3/’ (28)

- A (g - At =0, all 241 29
(u* ,,)( . - Ah) .7A 1 all 130, (29)
(0% + &M 5% + M) =0, allj (30)

Assume first that x* £ 0. Then v* = BTx" > 0. By (30), y* + 4y/' =0
for all j and all > 0. But then w* 4 Au" = — ¢, < 0, a contradiction.
Assume next that v* #£ 0 and " = 0. Then #" = 4y*> 0. By (29),
x*=0for all 4 £ 1; and x = 0 for all 4. Hence v" = BT+" = 0 and
v* is the same as v defined by (27) since »; must be at the smallest value
in order that (u*, v*, x*, y*) be an extreme-point solution. By the non-
degeneracy assumption, only v,* =0, and v;* > 0 for all j % r. Hence
(30) implies y * + Zyjh = Oforallj s ». Itisnow clear that the postulated
terminating ray is the original ray. This furnishes the desired contradic-
tion. The algorithm must terminate in an equilibrium point of the bimatrix
game I'(4, B).

A modification of almost complementary basic sets
Consider the system of equations

w =g + epzy + Mz, (31)
where z, represents an “artifical variable” and ¢, is a p-vector (1,..., 1).
It is clear that (31) always has nonnegative solutions. A solution of (31)
is called almost complementary if 2w, = 0 for ¢ =1,...,p and is com-

4 The notational analogy with the previously studied case M > 0 is obvious.
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plementary if, in addition, z, = 0. (See [16, p. 685] where a different
but equivalent definition is given.) In this case, let

Zo=1{(z02) lw=q+ epzy+ Mz220, 2,20, 220}

We consider the almost complementary ray generated by sufficiently
large z;,. The variables w,, ..., w, are initially basic while z,, 2, ..., 2,
are nonbasic variables. For a sufficiently large value of z, say z,*,

wr =g+ epzy” > 0.

As z, decreases toward zero, the basic variables w; decrease. An initial
extreme point is reached when z, attains the minimum value 2, for which
w = g + e,z = 0. If 2% = 0, then ¢ > 0; this is the trivial case for which
no algorithm is required. If 2,° > 0, some unique basic variable, say
w,, has reached its lower bound 0. Then z, becomes a basic variable in
place of w, and we have v = . Next, z,, the complement of w,, is to be
increased.

The remaining steps of the procedure are now identical to those in
the preceding algorithm. After a blocking variable becomes basic, its
complement is increased until either a basic variable blocks the increase
(by attaining its lower bound 0) or else an almost complementary ray
is generated. There are precisely two forms of termination. One is in a
ray as just described; the other is in the reduction of z, to the value 0
and hence the attainment of a complementary basic feasible solution of
(31), i.e., a solution of (1), (2).

Interest now centers on the meaning of termination in an almost
complementary ray solution of (31). For certain classes of matrices, the
process described above terminates in an almost complementary ray if and
only if the original system (1) has no solution. In the remainder of this
section, we shall amplify the preceding statement.

If termination in an almost complementary ray occurs after the
process reaches a basic feasible solution (w*; z5*, 2*) corresponding to
an extreme point of Z,, then there exists a nonzero vector (@’;z,", 2")
such that

wh = epat + Mzt (wh; 24t 2% = 0. (32)
Moreover for every A =0,
(w* + Aw’) = q + ep(2y* 4+ Azgt) 4+ M(z* + Azh) (33)

Linear Algebra and [ts Applications 1, 103—125 (1968)
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and
(wi* -+ Z.Zih) (Z,‘* -+ A.Zih) = 0, 1= 1, ey /7 (34)

The case 2" = 0 is ruled out, for otherwise z," > 0 and then %" > 0
because (w”; z,", 2*) # 0. Now if w* > 0, (34) implies 2* + Az" = z* = 0.
This, in turn, implies that the ray is the original one, which is not possible.

Furthermore, it follows from the almost complementarity of solutions
along the ray that

z*¥w* = z*w = zlwe* = zlwit = 0, i1=1,...,p (35)
The individual equations of the system (32) are of the form
wit = zy" + (M2¥);, i1=1,...,p. (36)
Multiplication of (36) by z” leads, via (35), to
0 = zhz,t + zM(M2H),, i=1,...,p, (37

from which we conclude that

THEOREM 4. Termination im a ray implies there exists a nomzero
nonnegative vector 2" such that

MMz, <0, i=1,...p (38)

At this juncture, two large classes of matrices M will be considered.
For the first class, we show that termination in a ray implies the ¢n-
consistency of the system (1). For the second class, we will show that
termination in a ray cannot occur, so that for this class of matrices,
(1), (2) always has a solution regardless of what ¢ is.

The first class mentioned above was introduced by Lemke [16].
These matrices, which we shall refer to as copositive plus, are required
to satisfy the two conditions

wMuwu =0 for all u =0, (39)

M+ MDu=0 if uMu=0 and u>=0. (40)

Matrices satisfying conditions (39) alone are known in the literature as
copositive (see [18, 12]). To our knowledge, there is no reference other
than [16] on copositive matrices satisfying the condition (40). However,
the class of such matrices is large and includes
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(i) all stricily copositive matrices, i.e., those for which #Mu > 0
when 0 £ u > 0;

(i) all positive semidefinite matrices, i.e., those for which #Mu > 0
for all u.

Positive matrices are obviously strictly copositive while positive definite
matrices are both positive semidefinite and strictly copositive. Further-
more, it is possible to “build” matrices satisfying (39) and (40) out of
smaller ones. For example, if M, and M, are matrices satisfying (39) and
(40) then so is the block-diagonal matrix

M, 0
M = .
0 M,

Moreover, if M satisfies (39) and (40) and S is any skew-symmetric matrix
(of its order), then M + S satisfies (39) and (40). Consequently, block

matrices such as
iy M, —A7T
T4 M,

satisfy (39) and (40) if and only if M, and M, do too. However, as Lemke
(16, 17] has pointed out, the matrices encountered in the bimatrix game
problem with 4 > 0 and B > 0 need not satisfy (40). The Lemke-
Howson iterative procedure for bimatrix games was given earlier in this
section. If applied to bimatrix games, the modification just given always
terminates in a ray after just one iteration, as can be verified by taking
any example.

The second class, consisting of matrices having positive principal
minors, has been studied by numerous investigators; see, for example,
[2, 4, 8, 9, 10, 22, 24]. In the case of symmetric matrices, those with
positive principal minors are positive definite. But the equivalence
breaks down in the nonsymmetric situation. Nonsymmetric matrices
with positive principal minors need not be positive definite. For example,

the matrix
2 — 7‘)
—1 4

has positive principal minors but is indefinite and not copositive. However,
positive definite matrices are a subset of those with positive principal
minors. (See, e.g., [2].)
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We shall make use of the fact that w = ¢ -+ Mz, (w;z) >0, has

no solution if there exists a vector v such that
vM <0, vg << 0, v =0 (41)

for otherwise 0 <{ v = vg -+ vMz << 0, a contradiction. Indeed, it is
a consequence of J. Farkas’ theorem [7] that (1) has no solution if and only
if there exists a solution of (41).

THEOREM 5. Let M be copositive plus. If the iterative procedure
terminates in a ray, then (1) has no solution.

Proof. Termination in a ray means that a basic feasible solution
(w*; z4*, 2*) will be reached at which conditions (32)—(34) hold and also
0 = Mt = leyz)h + MR (42)

Since M is copositive and 2" >> 0, both terms on the right side of (42)
are nonnegative, hence both are zero. The scalar z)" = 0 because 2"e, > 0.
The vanishing of the quadratic form z*M2z* means

Mzh L MTzh = 0.

But by (32), z," = 0 implies that w" = Mz* > 0, whence M*7* < 0 or,
what is the same thing, 2"M < 0. Next, by (35),

0 = z*wh = 2*Mz* = 2¥(— M7T2h) = — PM*
and we obtain again by (35)
0 = Zhw* = 2hq - Zhepzy* + PM* = 2'q + zhe,a *.
It follows that 2" << 0 because 2",z,* > 0. The conditions (1) are therefore

inconsistent because v = 2" satisfies (41).

COROLLARY. If M <4s strictly copositive, the process terminates in a
complementary basic feasible solution of (31).

Proof. If not, the proof of Theorem 5 would imply the existence of a
vector 2* satisfying 2"Mz" = 0, 0 54 2 = 0, which contradicts the strict
copositivity of M.

This corollary clearly generalizes Theorem 1. We now turn to the
matrices M having positive principal minors.
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THEOREM 6. If M has positive principal minors, the process terminates
in a complementary basic solution of (31) for any q.

Prooj. We have seen that termination in a ray implies the existence
of a nonzero vector z* satisfying the inequalities (38). However, Gale and
Nikaidé {10, Theorem 2] have shown that matrices with positive principal
minors are characterized by the impossibility of this event. Hence termina-
tion in a ray is not a possible outcome for problems in which M has positive
principal minors.

We can even improve upon this.

THEOREM 7. If M has the property that for each of its principal sub-
matrices M, the system

Mz <o, 04220,

has mo solution, then the process terminates in a complementary basic solution
of (31) for any gq.

Proof. Suppose the process terminates in a ray. From the solution
(w"; 2", 2") of the homogeneous system (32), define the vector @ of
components of ©" for which the corresponding component of z* | 2" is
positive. Then by (34) @" = 0. Let 2" be the vector of corresponding
components in z*. Clearly 0 7= #* > 0, since 0 7 z" >> 0 and any positive
component of z* is a positive component of #* by definition of " Let
M be the corresponding principal submatrix of M. Since M is a matrix
of order £ > 1 we may write

0=w"= €k20h + jﬂgh
Hence
Mz <0, 0=£ 23>0,

which is a contradiction.
3. THE PRINCIPAL PIVOTING METHOD

We shall now describe an algorithm proposed by the authors [4] which
predates that of Lemke. It evolved from a quadratic programming
algorithm of P. Wolfe [26], who was the first to use a type of complemen-
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tary rule for pivot choice. Our method is applicable to matrices M that
have positive principal minors (in particular to positive definite matrices)
and, after a minor modification, to positive semidefinite matrices.

In Lemke’s procedure for general M, an artificial variable % 1s in-
troduced in order to obtain feasible almost complementary solutions for
the augmented problem. In our approach, only variables of the original
problem are used, but these can take on initially negative as well as non-
negative values.

A major cycle of the algorithm is initiated with the complementary
basic solution (w;2) = (¢;0). If 4> 0, the procedure is immediately
terminated. If ¢ J= 0, we may assume (relabeling if necessary) that
w; = ¢, << 0. An almost complementary path is generated by increasing
z;, the complement of the selected negative basic variable. For points
along the path, zw, = 0 for 7 # 1.

Step I: Increase z; until it is blocked by a positive basic variable
decreasing to zero or by the negative w, increasing to zero.

Step 11: Make the blocking variable nonbasic by pivoting its com-
plement into the basic set. The major cycle is terminated if w; drops
out of the basic set of variables. Otherwise, return to Step I.

It will be shown that during a major cycle w, increases to zero. At
this point, a new complementary basic solution is obtained. However,
the number of basic variables with negative values is at least one less
than at the beginning of the major cycle. Since there are at most p
negative basic variables, no more than p major cycles are required to
obtain a complementary feasible solution of (22). The proof depends
on certain properties of matrices invariant under principal pivoting.

Principal pivot transform of a matrix

Consider the homogeneous system v = Mu# where M is a square
matrix. Here the variables v, ..., v, are basic and expressed in terms
of the nonbasic variables #,, ..., #,. Let any subset of the v; be made
nonbasic and the corresponding #; basic. Relabel the full set of basic
variables 7 and the corresponding nonbasic variables #. Let # = M4
express the new basic variables 7 in terms of the nonbasic ones. The
matrix M is called a principal pivot transform of M. Of course, this
transformation can be carried out only if the principal submatrix of M
corresponding to the set of variables z; and w, interchanged is nonsingular,
and this will be assumed whenever the term is used.
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THEOREM 8 (Tucker [24]). If a square matrix M has positive principal
minors, so does every principal pivot transform of M.

The proof of this theorem is easily obtained inductively by exchanging
the roles of one complementary pair and evaluating the resulting principal
minors in terms of those of M.

TuEOREM 9. If a matrix M 1s positive definite or positive semidefinite
so is every principal pivot transform of M.

Proof. The original proof given by the authors was along the lines
of that for the preceding theorem. P. Wolfe has suggested the following
elegant proof. Consider v = Mu. After the principal pivot transformation,
let 7 = Mii, where # is the new set of nonbasic variables. We wish to
show that @M1 = %6 > 0 if uMu = uv > 0. If M is positive definite,
the latter is true if # £ 0, and the former must hold because every pair
(%, 9;) 1s identical with (#;, v;) except possibly in reverse order. Hence
> #;7;, = >, up,>0. The proof in the semidefinite case replaces the
inequality > by .

Validity of the algorithm
The proof given below for = 3 goes through for general . Consider
@y = gy gz A Mgy o g2y
Wy = Qg - Mgy + MgyZy + MggZg
Wy = 3 + Mg12) + WiggZy + MgaZy.

Suppose that M has positive principal minors so that the diagonal co-
efficients are all positive:

iy > 0, gy > 0, Mgg > 0.

Suppose furthermore that some ¢, is negative, say ¢, << 0. Then the solu-
tion (w; 2) = (¢4, ¢a, ¢5; 0, 0, 0) is complementary, but not feasible because
a particular variable, in this case wy, which we refer to as distinguished
is negative. We now initiate an almost complementary path by increasing
the complement of the distinguished variable, in this case z;, which we
call the driving variable. Adjusting the basic variables, we have

(w; 2)t = (g, + myzy, g + M2y, g3 +- M52, 0,0, 0).
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Note that the distinguished variable w, increases strictly with the increase
of the driving variable z; because m;; > 0. Assuming nondegeneracy,
we can increase z; by a positive amount before it is blocked either by w,
reaching zero or by a basic variable that was positive and is now turning
negative.

In the former case, for some positive value z,* of the driving variable
z;, we have w, = ¢; + my;z* = 0. The solution

(w; 2)? = (0, g5 -+ Mz, g5 + my7,*: 0,0, 0)

is complementary and has one less negative component. Pivoting on
my, replaces w; by z; as a basic variable. By Theorem 8, the matrix M
in the new canonical system relabeled @ = § - Mz has positive principal
minors, allowing the entire major cycle to be repeated.

In the latter case, we have some other basic variable, say w, = g, +
Mgy2, blocking when z; = z* > 0. Then clearly my << 0 and g, > 0.
In this case,

(w; 2)% = (myz* + 41, 0, Mgy 2™ + ¢35 2%, 0, 0).
TueoreM 10. If the driving variable is blocked by a basic variable

other than its complement, a principal pivot exchanging the blocking variable
with its complement will permit the further increase of the driving variable.

Proof. Pivoting on m,, generates the canonical system
Wy = Gy gy o gy o+ g2y
2y =y + Mgy = Mgy + Higg2y
Wy = {3+ My 2y + MggWy + Migy2y.

The solution (w;z)? must satisfy the above since it is an equivalent
system. Therefore setting 2z, = z;*, wy, = 0, 2z, = 0 yields

(w; 2)2 = (g, + M2*, 0, g3 + Mgy 2% 2%, 0,0),

i.e., the same almost complementary solution. Increasing z beyond z*
yields

(@1 + M2y, 0, G5 + My 2y 23, 0, 0),

which is also almost complementary. The sign of #iy, is the reverse of my,,
. _ . el . o
since #ig = — Mg [Mge > 0. Hence z, increases with tncreasing z, > z,¥;
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i.e., the new basic variable replacing w, is not blocking. Since M has
positive principal minors, #iy; > 0. Hence w, continues to increase with
inereasing z, > z*.

THEOREM 11. The number of itevations within a major cycle is finite.

Proof. There are only finitely many possible bases. No basis can
be repeated with a larger value of z;. To see this, suppose it did for
7** > z,*.  This would imply that some component of the solution
turns negative at z; = z,* and yet is nonnegative when z; = #**. Since
the value of a component is linear in 2; we have a contradiction.

Paraphrase of the principal pivoting method

Along the almost complementary path there is only one degree of
freedom. In the proof of the validity of the algorithm, z; was increasing
and z, was shown to increase. The same class of solutions can be generated
by regarding z, as the driving variable and the other variables as adjusting.
Hence within each major cycle, the same almost complementary path
can be generated as follows. The first edge is obtained by using the
complement of the distinguished variable as the driving variable. As
soon as the driving variable is blocked, the following steps are iterated:

(a) replace the blocking variable by the driving variable and terminate
the major cycle if the blocking variable is distinguished; if the blocking
variable is not distinguished

(b) let the complement of the blocking variable be the new driving
variable and increase it until a new blocking variable is identified; return
to (a).

The paraphrase form is used in practice.

THEOREM 12.  The principal pivoting method teyminates in a solution
of (1), (2) ©f M has positive principal minors (and, in particular, if M is
positive definite).

Proof. We have shown that the completion of a major cycle occurs
in a finite number of steps, and each one reduces the total number of
variables with negative values. Hence in a finite number of steps, this
total is reduced to zero and a solution of the fundamental problem (1), (2)
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is obtained. Since a positive definite matrix has positive principal minors,
the method applies to such matrices.

As indicated earlier, the positive semidefinite case can be handled
by using the paraphrase form of the algorithm with a minor modification.
The reader will find details in [4].
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