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1. FORMULATION 

Linear programming, quadratic programming, and bimatrix (two- 

person, nonzero-sum) games lead to the consideration of the following 

fundawaental problem1 : Given a real p-v ctor 4 and a real J!J x fi matrix 

M, find vectors w and z which satisfy the conditionsa 

w=g+AJz, W > 0, z > 0, (1) 

ZW = 0. (2) 

The remainder of this section is devoted to an explanation of why this 

is so. (There are other fields in which this fundamental problem arises- 

see, for example, [6] and [13]-but we do not treat them here.) Sections 

2 and 3 are concerned with constructive procedures for solving the fun- 

damental problem under various assumptions on the data q and M. 

1 The fundamental problem can be extended from p sets each consisting of a 
pair of variables only one of which can bc nonbasic to k sets of several variables each, 
only one of which can be nonbasic. To be specific, consider a system w = q f Nz, 
zw > 0, z > 0, where N is a p x k matrix (k < p) and the variables wl, , zu@ are 
partitioned into k nonempty sets SI, I = I, ., k. Let TI = SJ IJ {q}, I = 1, , k. 

We seek a solution of the system in which exactly one member of each set T, is 
nonbasic. (The fundamental problem is of this form where k = p and Tl = {q, q}.) 

The underlying idea of Lemke’s approach (Sectlon 2) applies here. For example, it 
can be shown that this problem has a solution when N > 0. A paper is currently 
being prepared for publication in which this extension is developed in detail. 

* In general, capital italic letters denote matrices while vectors are denoted by 
lower case italic letters. Whether a vector is a row or a column will always be clear 
from the context, and consequently we dispense with transpose signs on vectors. In 
(2), for example, zw represents the scalar product of z (row) and w (column). The 
superscript T indicates the transpose of the matrix to which it is affixed. 
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Consider first linear programs in the symmetric primal-dual form 

due to J. von Neumann [ZO]. 

Primal linear program: Find a vector x and minimum f such that 

A-r: > b, n >, 0, z = cx. (3) 

Dual linear program: Find a vector y and maximum z such that 

yA f c, _s 3 0, _z = yb. (4) 

The duality theorem of linear programming [3] states that min 5 = max z 

when the primal and dual systems (3) and (4), respectively, are consistent 

or -in mathematical programming parlance - “feasible.” Since 

z = yb < yAx < cx = 5 

for all primal-feasible x and dual-feasible y, one seeks such solutions for 

which 

yb = cx. @I 

The inequality constraints of the primal and dual problems can be 

converted to equivalent systems of equations in nonnegative variables 

through the introduction of nonnegative “slack” variables. Jointly, the 

systems (3) and (4) are equivalent to 

Ax-v==b, ‘u 3 0, x 3 0, 
(6) 

ATy+u=c, 24 2 0, y > 0, 

and the linear programming problem becomes one of finding vectors 

U, v, x, y such that 

(;)=(“b)+(j: -;“‘i(;)’ ;;:I ;I;:; (‘I 

and, by (5), 

The definitions 

xu + yv = 0. (8) 

w=(I), q-lb), M_i; -oAT)> z=(I) (9) 

establish the correspondence between (l), (2) and (3), (4). 

Linear Algebra and Its A~@licaizons 1, 103-125 (1968) 
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The quadratic programming problem is typically stated in the following 

manner: Find a vector x and minimum f such that 

Ax>., x > 0, ,T? = CM + $x0x. (10) 

In this formulation, the matrix D may be assumed to be symmetric. 

The minimand f is a globally convex function of x if and only if the quad- 

ratic form XDX (or matrix D) is positive semidefinite, and when this 

is the case, (10) is called the convex quadratic programming problem. It 

is immediate that when D is the zero matrix, (10) reduces to the linear 

program (3). In this sense, the linear programming problem is a special 

case of the quadratic programming problem. 

For any quadratic programming problem (lo), define u and 71 by 

11 = D.Y - A=?, + c, ~1 = An: - b. (11) 

A vector x0 yields minimum i only if there exists a vector y” and vectors 

u”, v” given by (11) for x = x0 satisfying 

These necessary conditions for a minimum in (10) are a direct consequence 

of a theorem of H. W. Kuhn and A. W. Tucker [14]. It is well known- 

and not difficult to prove from first principles-that (12), known as the 

Kuhn-Tucker conditions, are also sufficient in the case of convex quadratic 

programming. By direct substitution, we have for any feasible vector X, 

z - 9’ = c(x - x0) + $xDx - ;x”D.Y~ 

= u”(x - x0) + y”(v - v”) + Q(x - x”)D(x - x0) 

= 2cox $ VOV + 4(x ~ xO)D(.r - x0) 3 0, 

which proves the sufficiency of conditions (12) for a minimum in the 

convex case. 

Thus, the problem of solving a quadratic program leads to a search 

for solution of the system 

zi=Dx-il=y+c, x 3 0, y > 0, 
(13) 

v=Ax-b, 14 3 0, v 3 0, 

X21 + yv = 0. (14) 

Linear Algebra and Ifs Applications 1. 103-125 (1968) 
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The definitions 

establish (13), (14) as a problem of the form (l), (2). 

Dual of a convex quadratic program. From (15) one is led naturally 

to the consideration of a matrix M = 
(: 2’) 

wherein E, like D, 

is positive semidefinite. It is shown in [l] that the 

Primal quadratic jwogram: Find x and minimum 2 such that 

Ax+Ey>b, x >, 0, f = cx + &(xDx + yEy), (16) 

has the associated 

Dual quadratic program: Find y and maximum _z such that 

-Dx+ATy<c, Y >, 0, z = by - g(xDx - yEy). (17) 

All the results of duality in linear programming extend to these problems, 

and indeed they are jointly solvable if either is solvable. When E = 0, 

the primal problem is just (lo), for which W. S. Dorn [5] first established 

the duality theory later extended in [l]. When both D and E are zero 

matrices, this dual pair (16), (17) re d uces to the dual pair of linear programs 

(3)l (4). 

Remarks. (a) The minimand in (10) is strictly convex if and only 

if the quadratic form XDX is positive definite. Any feasible strictly 

convex quadratic program has a unique minimizing solution x0. (b) 
When D and E are positive semidefinite (the case of convex quadratic 

programming), so is 

A bimatrix (or two-person nonzero-sum) game, r(A, B), is given by 

a pair of m x n matrices A and B. One party, called the row player, has 

m pure strategies which are identified with the rows of A. The other 

party, called the columlz player, has n pure strategies which correspond 

to the columns of B. If the row player uses his ith pure strategy and 

the column player uses his jth pure strategy, then their respective losses 

are defined as ajj and b,, respectively. Using mixed strategies, 
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their expected losses are xAy and xB~, respectively. (A component 

in a mixed strategy is interpreted as the probability with which the player 

uses the corresponding pure strategy.) 

A pair (x0, y”) of mixed strategies is a Nash [19] equilibrium @o&t 

of r(A, B) if 

xOAy0 < xAy0, all mixed strategies x, 

xOBy0 < xOBy, all mixed strategies y. 

It is evident (see, for example, [15]) that if (x0, y”) is an equilibrium point 

of r(A, I?), then it is also an equilibrium point for the game r(A’B’) in 

which 

A’= [@jfK], I?’ = [bij + L], 

where K and I, are arbitrary scalars. Hence there is no loss of generality 

in assuming that A > 0 and B > 0, and we shall make this assumption 

hereafter. 

Next, by letting ek denote the k-vector all of whose components are 

unity, it is easily shown that (x0, y”) is an equilibrium point of T(A, B) 

if and only if 

(x”Ayo)e, < Aye (A > O), (18) 

(x”Byo)e, < BTxo (B > 0). (19) 

This characterization of an equilibrium point leads to a theorem which 

relates the equilibrium-point problem to a system of the form (l), (2). 

For A > 0 and B > 0, if zt*, v*, x*, y* is a solution of the system 

2~ = Ay - e,, a4 3 0, y 2 0, 

(20) 
IJ = BTx ~ e,, 21 2 0, x b 0, 

then 

XM + yv = 0, (21) 

Linear Algebra ad Its Applicatims 1, 103-125 (1968) 
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is an equilibrium point of r(A) B). Conversely, if (x0, y”) is an equilibrium 

point of &4, B) then 

is a solution of (ZO), (21). The latter system is clearly of the form (l), (2), 

where 

Notice that the assumption A > 0, B > 0 precludes the possibility of 

the matrix M above belonging to the positive semidefinite class. 

The existence of an equilibrium point for r(A, B) was established 

by J. Nash [19] whose proof employs the Brouwer fixed-point theorem. 

Recently, an elementary constructive proof was discovered by C. E. 

Lemke and J. T. Howson, Jr. [15]. 

2. LEMKE’S ITERATIVE SOLUTION OF THE FUNDAMENTAL PROBLEM 

This section is concerned with the iterative technique of Lemke and 

Howson for finding equilibrium points of bimatrix games which was 

later extended by Lemke to the fundamental problem (l), (2). We introduce 

first some terminology common to the subject of this section and the 

next. Consider the system of linear equations 

w==q+Mz, (22) 

where, for the moment, the p-vector q and the p x ~5 matrix M are 

arbitrary. Both w and z are p-vectors. 

For i = 1,. . . , p the corresponding variables zi and w’i are called 

com$dementary and each is the complement of the other. A complementary 

solution of (22) is a pair of vectors satisfying (22) and 

z+i = 0, i = 1,. . .,p, (23) 

Notice that a solution (ze); .z) of (l), (2) . is a nonnegative complementary 

solution of (22). Finally, a solution of (22) will be called almost com- 

plementary if it satisfies (23) except for one value of i, say i = P. That 

is, zg # 0, wg # 0. 

In general, the procedure assumes as given an extreme point of the 

convex set 
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which also happens to be the end point of an almost complementary 
ray (unbounded edge) of 2. Each point of this ray satisfies (23) but for 
one value of i, say ,8. It is not always easy to find such a starting point 
for an arbitrary M. Yet there are two important realizations of the 
fundamental problem which can be so initiated. The first is the bimatrix 
game case to be discussed soon; the second is the case where an entire 
column of M is positive. The latter property can always be artificially 
induced by augmenting M with an additional positive column; as we 
shall see, this turns out to be a useful device for initiating the procedure 
with a general M. 

Each iteration corresponds to motion from an extreme point Pi along 
an edge of 2 all points of which are almost complementary solutions of 
(22). If this edge is bounded, an adjacent extreme point P,+* is reached 
which is either complementary or almost complementary. The process 
terminates if (i) the edge is unbounded (a ray), (ii) Pit, is a previously 
generated extreme point, or (iii) Piti is a complementary extreme point. 

Under the assumption of nondegeneracy, the extreme points of Z 
are in one-to-one correspondence with the basic feasible solutions of (22) 
(see 131). Still under this assumption, a ~o~~~~e~~~~ta~y basic feasible 
~olz~t~~~ is one in which the complement of each basic variable is nonbasic. 
The goal is to obtain a basic feasible solution with such a property. In 
an almost compIementary basic feasible of (23), there will be exactly 
one index, say @, such that both We and zp are basic variables. Likewise, 
there will be exactly one index, say Y, such that both zefy and z, are non- 
basic variables.3 

An almost complementary edge is generated by holding all nonbasic 
variables at value zero and increasing either z, or W, of the nonbasic 
pair z,, r0,. There are consequently exactly two almost complementary 
edges associated with an almost complementary extreme point (cor- 
responding to an almost complementary basic feasible solution). 

Suppose that z, is the nonbasic variable to be increased. The values 
of the basic variables will change linearly with the changes in z,. For 
sufficiently small positive values of zy, the almost complementary solution 
remains feasible. This is a consequence of the nondegeneracy assumption. 

S C. van de Panne and A. Whinston [21] have used the appropriate terms basic 

and nonbasic pair for {wb, zp} and {wv, zyl respectively. 

Linear Algebra and Its Appplications 1, 103-125 (1968) 
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But in order to retain feasibility, the values of the basic variables must 

be prevented from becoming negative. 

If the value of z, can be made arbitrarily large without forcing any 

basic variable to become negative, then a ray is generated. In this event, 

the process terminates. However, if some basic variable blocks the increase 

of z, (i.e., vanishes for a positive value of zy), then a new basic solution 

is obtained which is either complementary or almost complementary, 

A complementary solution occurs only if a member of the basic pair 

blocks z,. A new almost complementary extreme point solution is obtained 

if the blocking occurs otherwise. In the complementary case, we have the 

desired result: a complementary basic feasible solution. In the almost 

complementary case, the nondegeneracy assumption guarantees the 

uniqueness of the blocking variable. It will become nonbasic in place 

of z, and its index becomes the new value of v. 

The com@ementary rule 

The complement of the (now nonbasic) blocking variable-or equiv- 

alently put, the other member of the “new” nonbasic pair-is the next 

nonbasic variable to be increased. The procedure consists of the iteration 

of these steps. The generated sequence of almost complementary extreme 

points and edges is called an almost complementary path. 

THEOREM 1. Along an almost complementary path, the only almost 

com$dementary basic feasible solution which can yeoccuuy is the initial one. 

Pvoof. We assume that all basic feasible solutions of (22) are non- 

degenerate. (This can be assured by any of the standard lexicographic 

techniques [3] for resolving the ambiguities of degeneracy.) Suppose, 

contrary to the assertion of the theorem, that the procedure generates 

a sequence of almost complementary basic feasible solutions in which a 

term other than the first one (P, in the accompanying figure) is repeated 

Linear Algebra and Its Applications 1, 103-125 (1968) 
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(say P,). By the nondegeneracy assumption, the extreme points of 2 

are in one-to-one correspondence with basic feasible solutions of (22). 

Let P, denote the successor of P, and let P, denote the second predecessor 

to P,, namely the one along the path just before the return to P,. The 

extreme points P,, P,, P, are distinct and each is adjacent to P, along 

an almost complementary edge. But there are only two such edges at P,. 

This contradiction completes the proof. 

\Ve can immediately state the 

COKOLLARY. If the almost complementary path is initiated at the end 

point of an almost complementary yay, the procedure must terminate either 

in a different ray OY in a complementary basic feasible solution. 

It is easy to show by examples that starting from an almost complemen- 

tary basic feasible solution which is not the end point of an almost com- 

plementary ray, the procedure can return to the initial point regardless 

of the existence or nonexistence of a solution to (l), (2). 

Example 1. The set Z associated with 

is nonempty and bounded. It is clear that no solution of (1) can also 

satisfy (2) since zrzq > 0. Let the extreme point corresponding to the 

solution w = (1, 0, 0), z = (1, 0, 2) be the initial point of a path which 

begins by increasing z2. This will return to the initial extreme point 
after 4 iterations. 

Example 2. The set Z associated with 

is likewise nonempty and bounded. The corresponding fundamental 
problem (l), (2) has a complementary solution w = (1, 0, 1, 0), z = 

(0, 1, 0, 1). Yet by starting at w = (1, 2, 0, l), z = (3, 0, 0, 0) and in- 
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creasing za, the method generates a path which returns to its starting 

point after 4 iterations. 

Furthermore, even if the procedure is initiated from an extreme 

point at the end of an almost complementary ray, termination in a ray 

is possible whether or not the fundamental problem has a solution. 

Example 3. Given the data 

the point of 2 which corresponds to w = (l,O, 4, l), z = (l,O, 0,O) is at the 

end of an almost complementary ray, w = (1, w,, 4 + wz, l), z = 

(1 + w2, 0, 0,O). Moving along the edge generated by increasing zs leads to 

a new almost complementary extreme point at which the required increase 

of z, is unblocked, so that the process terminates in a ray, and yet the 

fundamental problem is solved by 

w = (2, 0, 1, O), z = (0, l,O, 1). 

Example 4. In the problem with 

q-(-J7 M=(Y -:) 
the inequalities (1) have solutions, but none of them satisfies (2). The 

point corresponding to (w ; z) = (1,0 ; 1,0) is at the end of an almost 

complementary ray w = (1, ws), z = (ws, 0). When zs is increased, it is 

not blocked, and the process terminates in a ray. 

Consequelzces of termination in a ray 

In this geometrical approach to the fundamental problem, it is useful 

to interpret algebraically the meaning of termination in an almost com- 

plementary ray. This can be achieved by use of a standard result in linear 

inequality theory [ll, 31. 

LEMMA. If (w * ; z*) is alz almost complementary basic feasible solution 

of (22), and (w *; z*) is incident to an almost complementary ray, there 

exist p-vectors wh, zh such that 

wh = Mzh, Wh 2 0, Zh > 0, 2’1 # 0 (24) 
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and points along the almost compdementav3, ray are of the form 

(z&j* + izah, z* + iz”), 2 3 0, (25) 

and satisfy 

(wi* + aW,h)(Z* + ;iZjh) = 0 for all ;Z 3 0, and all i # /Ll. (26) 

THEOREM 2. If M > 0, (22) kas a complementary basic feasible solution 

for any vector q. 

Proof. Select or, . , ‘pip as the basic variables in (22). We may 

assume that q 213 0 for otherwise (w; z) = (q; 0) immediately solves the 

problem. A starting ray of feasible almost complementary solutions is 

generated by taking a sufficiently large value of any nonbasic variable, 

say zr. Reduce zi toward zero until it reaches a value zi” 3 0 at which 

a unique basic variable (assuming nondegeneracy) becomes zero. An 

extreme point has then been reached. 

The procedure has been initiated in the manner described by the 

corollary above, and consequently the procedure must terminate either 

in a complementary basic feasible solution or in an almost complementary 

ray after some basic feasible solution (ZJ; z*) is reached. We now show 

that the latter cannot happen. For if it does, conditions (24)-(26) of the 

lemma obtain with /3 = 1. Since M > 0 and zh > 0. this implies 7d' > 0. 

Hence by (26), zi* = zih = 0 for all i # 1. Hence the only variables 

which change with i are zi and the components of w. Therefore the final 

generated ray is the same as the initiating ray, which contradicts the 

corollary. 

THEOREM 3. A bimatrix game IJA, B) has nw extreme equilibrhm 

point. 

Proof. Initiate the algorithm by choosing the smallest positive value 

of x1, say xi”, such that 

where B,’ is the first column of R?‘. With 
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it follows (assuming nondegeneracy) that no has exactly one zero compo- 

nent, say the rth. The ray is generated by choosing as basic variables x1 

and all the slack variables U, u except for v,. The complement of II,, 
namely yI, is chosen as the nonbasic variable to increase indefinitely. 

For sufficiently large values of y,, the basic variables are all nonnegative 

and the ray so generated is complementary except possibly xrztr might 

not equal 0. Letting yr decrease toward zero, the initial extreme point 

is obtained for some positive value of yr. 

If the procedure does not terminate in an equilibrium point, then 

by the corollary, it terminates in an almost complementary ray. The 

latter implies the existence of a class of almost complementary solutions 

of the form4 

(2s) 

(29) 

(30) 

Assume first that xh # 0. Then y’* = B*x” > 0. By (30), yj* + ny; = 0 

for all j and all I 3 0. But then u* + iluh = - e,< 0, a contradiction. 

Assume next that yh # 0 and xh = 0. Then uh = Ayh > 0. By (29), 

xi* = 0 for all i # 1; and xih = 0 for all i. Hence -oh = BTa?’ = 0 and 

Y* is the same as v defined by (27) since x1 must be at the smallest value 

in order that (.u*, o*, x*, y*) be an extreme-point solution. By the non- 

degeneracy assumption, only v,* = 0, and vj* > 0 for all j # Y. Hence 

(30) impliesy,* + A_Yjh = 0 for all j f 7. It is now clear that the postulated 

terminating ray is the original ray. This furnishes the desired contradic- 

tion. The algorithm must terminate in an equilibrium point of the bimatrix 

game r(A , B). 

A ,modificatiolz of almost complementary basic sets 

Consider the system of equations 

W = 4 + epzo + Mz, (31) 

where z. represents an “artifical variable” and ep is a p-vector (1, . . . , 1). 

It is clear that (31) always has nonnegative solutions. A solution of (31) 

is called almost complementary if ziwi = 0 for i = 1, . . . , p and is com- 

4 The notational analogy with the previously studied cast 121 > 0 1s obvious. 
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elementary if, in addition, z0 = 0. (See [16, p. 6851 where a different 

but equivalent definition is given.) In this case, let 

%” = {(z,,, z) j w = q + Ppz” + Mz 3 0, 2” b 0, z b 0). 

We consider the almost complementary ray generated by sufficiently 

large z,. The variables pi, . , wp are initially basic while z,,, zr, . . , zp 

are nonbasic variables. For a sufficiently large value of zO, say zO&, 

As z,, decreases toward zero, the basic variables XV, decrease. An initial 

extreme point is reached when z0 attains the minimum value zoo for which 

ZEI = 2 + epzo 3 0. If zoo = 0, then 4 > 0; this is the trivial case for which 

no algorithm is required. If zoo > 0, some unique basic variable, say 

UJ~, has reached its lower bound 0. Then z. becomes a basic variable in 

place of Zen, and we have v = Y. Next, zr, the complement of 2e/,, is to be 
increased. 

The remaining steps of the procedure are now identical to those in 

the preceding algorithm. After a blocking variable becomes basic, its 

complement is increased until either a basic variable blocks the increase 

(by attaining its lower bound 0) or else an almost complementary ray 

is generated. There are precisely two forms of termination. One is in a 

ray as just described; the other is in the reduction of z, to the value 0 

and hence the attainment of a complementary basic feasible solution of 

(31), i.e., a solution of (l), (2). 

Interest now centers on the meaning of termination in an almost 

complementary ray solution of (31). For certain classes of matrices, the 

Process described above terminates in an almost complementary 7ay if and 

only if the original system (1) has no sol&on. In the remainder of this 

section, we shall amplify the preceding statement. 

If termination in an almost complementary ray occurs after the 

process reaches a basic feasible solution (w*; zo*, z*) corresponding to 

an extreme point of Z,, then there exists a nonaero vector (zN”; z,;, z”) 

such that 

Moreover for every il > 0, 

(7u* + 174 = q $- ep(z,* + AZ,,") + M(z* + Izh) 
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and 

(w,,* + izp)(zi* + AZ,“) = 0, i = 1,. . .,;h. (34) 

The case 2” = 0 is ruled out, for otherwise z,,” > 0 and then wk > 0 

because (& ; z,,‘, z”) # 0. Now if wk > 0, (34) implies z* + AZ” = z* = 0. 

This, in turn, implies that the ray is the original one, which is not possible. 

Furthermore, it follows from the almost complementarity of solutions 

along the ray that 

z *W,* = Zi*ge’lh = &&ji* = Q-Q _ 0 z i = 1,. . .,/I. 

The individual equations of the system (32) are of the form 

m, k = z()Jt + (A!fzh)t, i- 1,...,p. 

Multiplication of (36) by zik leads, via (35), to 

0 = Z&h + z;k(Mzh),, i=l,...,P, 

from which we conclude that 

(35) 

(36) 

(37) 

THEOREM 4. Termination in a ray implies there exists a nonzero 

nonnegative vector zh such that 

z,h(Mzh), < 0, i= l,...,). (38) 

,4t this juncture, two large classes of matrices M will be considered. 

For the first class, we show that termination in a ray implies the in- 

consistency of the system (1). For the second class, we will show that 

termination in a ray cannot occur, so that for this class of matrices, 

(l), (2) always has a solution regardless of what g is. 

The first class mentioned above was introduced by Lemke [lS]. 

These matrices, which we shall refer to as copositive plus, are required 

to satisfy the two conditions 

UIVIU >, 0 for all ZL 3 0, (39) 

(M + Mr‘)z~ = 0 if uMz4 = 0 and zt > 0. (40) 

Matrices satisfying conditions (39) alone are known in the literature as 

co$ositive (see [18, 121). To our knowledge, there is no reference other 

than [IS] on copositive matrices satisfying the condition (40). However, 

the class of such matrices is large and includes 
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(i) all strictly copositive matrices, i.e., those for which UMG > 0 

when O#u>O; 

(ii) all positive semidefinite matrices, i.e., those for which &Vfu > 0 

for all u. 

Positive matrices are obviously strictly copositive while positive definite 

matrices are both positive semidefinite and strictly copositive. Further- 

more, it is possible to “build” matrices satisfying (39) and (40) out of 

smaller ones. For example, if M, and M, are matrices satisfying (39) and 

(40) then so is the block-diagonal matrix 

Moreover, if M satisfies (39) and (40) and S is any skew-symmetric matrix 

(of its order), then M + S satisfies (39) and (40). Consequently, block 

matrices such as 

satisfy (39) and (40) if and only if M, and M, do too. However, as Lemke 

[16, 171 has pointed out, the matrices encountered in the bimatrix game 

problem with A > 0 and B > 0 need not satisfy (40). The Lemke- 

Howson iterative procedure for bimatrix games was given earlier in this 

section. If applied to bimatrix games, the modification just given always 

terminates in a ray after just one iteration, as can be verified by taking 

any example. 

The second class, consisting of matrices having positive principal 

minors, has been studied by numerous investigators; see, for example, 

[2, 4, 8, 9, 10, 22, 241. In the case of symmetric matrices, those with 

positive principal minors are positive definite. But the equivalence 

breaks down in the nonsymmetric situation. Nonsymmetric matrices 

with positive principal minors need not be positive definite. For example, 

the matrix 

has positive principal minors but is indefinite and not copositive. However, 

positive definite matrices are a subset of those with positive principal 

minors. (See, e.g., [2].) 

Linear 9lgebra and Its Applications 1, 103 - 125 (1968) 



11x K. W. COTTLE AXD G. B. DANTZIG 

\Ve shall make use of the fact that w = 2 + Mz, (w; Z) > 0, has 

no solution if there exists a vector u such that 

vh!! < 0, 7vq < 0, 2’ 3 0 (41) 

for otherwise 0 < VW = ~‘4 + uMz < 0, a contradiction. Indeed, it is 

a consequence of J. Farkas’ theorem [7] that (1) has no solution if and only 

if there exists a solution of (41). 

THEOREM 5. Let M be copositive $us. If the iterative Procedure 

terminates in a ray, then (1) has no solution. 

Proof. Termination in a ray means that a basic feasible solution 

(W* ; zo*, z*) will be reached at which conditions (32)-(34) hold and also 

0 = zhwh = ziiepzgil + zhAZz~~. (42) 

Since M is copositive and zir 3 0, both terms on the right side of (42) 

are nonnegative, hence both are zero. The scalar z~” = 0 because Zliep > 0. 

The vanishing of the quadratic form zhMzh means 

But by (32), zok = 0 implies that wR = Mz” >, 0, whence M’z” < 0 or, 

what is the same thing, z”M < 0. Next, by (35), 

() = ~*‘ig+ z z*M,y” zz z*(- d$f“z”) = - ,$Mz* 

and we obtain again by (35) 

0 = z’%* = ~“4 _I- 9epZ0* + @Mz* = ~“4 + ZkepZO* 

It follows that zhq < 0 because zIZe p z ,,* > 0. The conditions (1) are therefore 

inconsistent because v = zh satisfies (41). 

COROLLARY. If M is strictly copositive, the @ocess terminates in a 

complementary basic feasible solution of (31). 

Proof. If not, the proof of Theorem 5 would imply the existence of a 

vector A+~ satisfying z”Mzh = 0, 0 # zh > 0, which contradicts the strict 

copositivity of M. 

This corollary clearly generalizes Theorem 1. We now turn to the 

matrices M having positive principal minors. 
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THEORE~I B. If M has positizre principal minors, the @ocess terminates 

in a con@lementar~~ basic solution of (31) for any q. 

Proof. \Ve have seen that termination in a ray implies the existence 

of a nonzero vector zh satisfying the inequalities (38). However, Gale and 

Nikaido [lo, Theorem 21 have shown that matrices with positive principal 

minors are characterized by the impossibility of this event. Hence termina- 

tion in a ray is not a possible outcome for problems in which A4 has positive 

principal minors. 

We can even improve upon this. 

THEOREM 7. If M has the property that for each of its principal sub- 

matrices I@, the system 

has no solution, then the process terminates in a complementary basic solution 

of (31) for any q. 

Proof. Suppose the process terminates in a ray. From the solution 

(wh; %Jh> zh) of the homogeneous system (32), define the vector ~5’ of 

components of wh for which the corresponding component of Z* + z?’ is 

positive. Then by (34) Gh = 0. Let 2” be the vector of corresponding 

components in zh. Clearly 0 # Zh > 0, since 0 # z” > 0 and any positive 

component of zh is a positive component of Yh by definition of rZh. Let 

A? be the corresponding principal submatrix of M. Since i@ is a matrix 

of order k 3 1 we may write 

0 = Gh = efizOh + ,llah 

Hence 

A9 < 0, 0 # z”h > 0, 

which is a contradiction. 

3. THE PRINCIPAL PIVOTING METHOD 

We shall now describe an algorithm proposed by the authors [4] which 

predates that of Lemke. It evolved from a quadratic programming 

algorithm of P. Wolfe [26], who was the first to use a type of complemen- 
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tary rule for pivot choice. Our method is applicable to matrices M that 

have positive principal minors (in particular to positive definite matrices) 

and, after a minor modification, to positive semidefinite matrices. 

In Lemke’s procedure for general M, an artificial variable z,, is in- 

troduced in order to obtain feasible almost complementary solutions for 

the augmented problem. In our approach, only variables of the original 

problem are used, but these can take on initially negative as well as non- 

negative values. 

A major cycle of the algorithm is initiated with the complementary 

basic solution (w; z) = (q; 0). If q 2 0, the procedure is immediately 

terminated. If q 21s 0, we may assume (relabeling if necessary) that 

U+ = q1 < 0. An almost complementary path is generated by increasing 

zr, the complement of the selected negative basic variable. ForYpoints 

along the path, ziww, = 0 for i # 1. 

Step I: Increase zr until it is blocked by a positive basic variable 

decreasing to zero or by the negative wr increasing to zero. 

Step II: Make the blocking variable nonbasic by pivoting its com- 

plement into the basic set. The major cycle is terminated if ze~r drops 

out of the basic set of variables. Otherwise, return to Step I. 

It will be shown that during a major cycle or increases to zero. At 

this point, a new complementary basic solution is obtained. However, 

the number of basic variables with negative values is at least one less 

than at the beginning of the major cycle. Since there are at most $ 

negative basic variables, no more than p major cycles are required to 

obtain a complementary feasible solution of (22). The proof depends 

on certain properties of matrices invariant under principal pivoting. 

Principal pivot transform of a matrix 

Consider the homogeneous system u = Mu where M is a square 

matrix. Here the variables vr, . . . , vp are basic and expressed in terms 

of the nonbasic variables or, . , up. Let any subset of the vi be made 

nonbasic and the corresponding ui basic. Relabel the full set of basic 

variables B and the corresponding nonbasic variables d. Let 0 = Wti 

express the new basic variables fi in terms of the nonbasic ones. The 

matrix i@ is called a principal pivot transform of M. Of course, this 

transformation can be carried out only if the principal submatrix of M 

corresponding to the set of variables zi and wi interchanged is nonsingular, 

and this will be assumed whenever the term is used. 
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THEOREM 8 (Tucker [24]). If a square matrix M has Positive principal 

minors, so does every principal pivot transform of M. 

The proof of this theorem is easily obtained inductively by exchanging 

the roles of one complementary pair and evaluating the resulting principal 

minors in terms of those of M. 

THEOREM 9. If a matrix M is positive definite 07 positive semidefinite 

so is every principal pivot transform of M. 

Proof. The original proof given by the authors was along the lines 

of that for the preceding theorem. P. Wolfe has suggested the following 

elegant proof. Consider v = Mu. After the principal pivot transformation, 

let B = A?S, where c is the new set of nonbasic variables. We wish to 

show that UazZ = ti$ > 0 if uMu = uv > 0. If M is positive definite, 

the latter is true if u # 0, and the former must hold because every pair 

(z& fiJ is identical with (zbi, VJ except possibly in reverse order. Hence 

ci ?.zici = 2; U,V, > 0. The proof in the semidefinite case replaces the 

inequality > by 3. 

Validity of the algorithm 

The proof given below for p = 3 goes through for general $J. Consider 

Wl = q1 + f+~llzl + m12z2 + ~q3z3 

w2 = 92 + fn21Zl + m2222 i- 1n23z3 

m3 = 93 + m3121 + n23222 + m33z3. 

Suppose that M has positive principal minors so that the diagonal co- 

efficients are all positive : 

ml1 > 0, 9%42 > 0, m33 > 0. 

Suppose furthermore that some qj is negative, say ql < 0. Then the solu- 

tion (w; z) = (ql, q2, q3; 0, 0, 0) is complementary, but not feasible because 

a particular variable, in this case wi, which we refer to as distinguished 

is negative. We now initiate an almost complementary path by increasing 

the complement of the distinguished variable, in this case .zl, which we 

call the driving variable. Adjusting the basic variables, we have 

(w ; 4 1 = bh + mllzl, q2 + m,,q q3 + fa313 ; O,O, 0). 
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Note that the distinguished variable or increases strictly with the increase 

of the driving variable zr because m,, > 0. Assuming nondegeneracy, 

we can increase z1 by a positive amount before it is blocked either by W, 

reaching zero or by a basic variable that was positive and is now turning 

negative. 

In the former case, for some positive value zr* of the driving variable 

zr, we have w1 = q1 + WZ~~Z~* = 0. The solution 

(w ; z) 2 = (0, qz + ?“12&*, q3 + “?2&* ; 0, 0, 0) 

is complementary and has one less negative component. Pivoting on 

ml, replaces ZLV~ by zi as a basic variable. By Theorem 8, the matrix LY? 

in the new canonical system relabeled ~8 = q + nZ has positive principal 

minors, allowing the entire major cycle to be repeated. 

In the latter case, we have some other basic variable, say Zeus = q2 + 

msl.zl blocking when zi = zr* > 0. Then clearly msi < 0 and q2 > 0. 

In this case, 

@;2)2 1 (vzllzl* + q1,0,ra3,z,* -t q3; zl*,o, 0). 

THEOREM 10. If the driving variable is blocked by a basic variable 

other than its com@ement, a principal pivot exchanging the blocking variable 

with its com$lement will permit the further ilzcrease of the driving variable. 

Proof. Pivoting on ma2 g enerates the canonical system 

Wl = 41 + qlzl + 9+p2 + m13z3 

22 = q2 $- 'ii,,Z, f 'G22ze2 + "l,,Z, 

w3 = q3 + 11231.zl + cL32w2 + ?&,z,. 

The solution (w; 2)s must satisfy the above since it is an equivalent 

system. Therefore setting z1 = zi*, w2 = 0, Z, = 0 yields 

(w; 4’ = (41 + $,zl*, 0, q3 + a3121*: z1*, 0, O), 

i.e., the same almost complementary solution. Increasing z, beyond z,* 

yields 

(9r + %zl, 0, q3 + m31zl; zl, 0, (3, 

which is also almost complementary. The sign of %a1 is the reverse of m2i, 

since +i,, = - m21/m2Z > 0. Hence z2 increases with increasing z1 > zl*; 
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i.e., the new basic variable replacing q is not blocking. Since a has 

positive principal minors, YZ,, > 0. Hence Zen, continues to increase with 

increasing z1 > q*. 

THEOREM 11. The number of iterations within a major cycle is finite. 

Proof. There are only finitely many possible bases. Ko basis can 

be repeated with a larger value of zr. To see this, suppose it did for 

21 ** > zr*. This would imply that some component of the solution 

turns negative at zr = zr* and yet is nonnegative when zr = x1**. Since 

the value of a component is linear in zr we have a contradiction. 

Paraph.rase of the principal pivoting method 

Along the almost complementary path there is only one degree of 

freedom. In the proof of the validity of the algorithm, zr was increasing 

and zz was shown to increase. The same class of solutions can be generated 

by regarding z2 as the driving variable and the other variables as adjusting. 

Hence within each major cycle, the same almost complementary path 

can be generated as follows. The first edge is obtained by using the 

complement of the distinguished variable as the driving variable. As 

soon as the driving variable is blocked, the following steps are iterated: 

(a) replace the blocking variable by the driving variable and terminate 

the major cycle if the blocking variable is distinguished; if the blocking 

variable is not distinguished 

(b) let the complement of the blocking variable be the new driving 

variable and increase it until a new blocking variable is identified; return 

to (a). 

The paraphrase form is used in practice. 

THEOREM 12. The jwincipal pivoting method terminates in a solution 

of (l), (2) if M has positive principal minors (and, in particular, if M is 

positive definite). 

Proof. We have shown that the completion of a major cycle occurs 

in a finite number of steps, and each one reduces the total number of 

variables with negative values. Hence in a finite number of steps, this 

total is reduced to zero and a solution of the fundamental problem (l), (2) 
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is obtained. Since a positive definite matrix has positive principal minors, 

the method applies to such matrices. 

As indicated earlier, the positive semidefinite case can be handled 

by using the paraphrase form of the algorithm with a minor modification. 

The reader will find details in [4]. 
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